本文作者:站长

Python计算机视觉深度学习物体检测实战

站长 2021-03-29 231 抢沙发
Python计算机视觉深度学习物体检测实战摘要:  计算机视觉-物体检测-通用解决框架Mask-Rcnn实战课程旨在帮助同学们快速掌握物体检测领域当下主流解决方案与网络框架构建原理,基于开源项目解读其应用领域与使用方法。...

 计算机视觉-物体检测-通用解决框架Mask-Rcnn实战课程旨在帮助同学们快速掌握物体检测领域当下主流解决方案与网络框架构建原理,基于开源项目解读其应用领域与使用方法。通过debug方式,详细解读项目中每一模块核心源码,从代码角度理解网络实现方法与建模流程。为了方便同学们能将项目应用到自己的数据与任务中,实例演示如何针对自己的数据集制作标签与代码调整方法,全程实战操作,通俗讲解其中复杂的网络架构。

课程目录

Python计算机视觉深度学习物体检测实战

1-1 课程简介.mp4

1-2 Mask-Rcnn开源项目简介.mp4

1-3 开源项目数据集.mp4

1-4 参数配置.mp4

2-1 FPN网络架构实现解读.mp4

2-10 RoiPooling层的作用与目的.mp4

2-11 RorAlign操作的效果.mp4

2-12 整体框架回顾.mp4

2-2 FPN层特征提取原理解读.mp4

2-3 生成框比例设置.mp4

2-4 基于不同尺度特征图生成所有框.mp4

2-5 RPN层的作用与实现解读.mp4

2-6 候选框过滤方法.mp4

2-7 Proposal层实现方法.mp4

2-8 DetectionTarget层的作用.mp4

2-9 正负样本选择与标签定义.mp4

3-1 Labelme工具安装.mp4

3-2 使用labelme进行数据与标签标注.mp4

3-3 完成训练数据准备工作.mp4

3-4 maskrcnn源码修改方法.mp4

3-5 基于标注数据训练所需任务.mp4

3-6 测试与展示模块.mp4

4-1 COCO数据集与人体姿态识别简介.mp4

4-2 网络架构概述.mp4

4-3 流程与结果演示.mp4

5-1 迁移学习的目标.mp4

5-2 迁移学习策略.mp4

5-3 Resnet原理.mp4

5-4 Resnet网络细节.mp4

5-5 Resnet基本处理操作.mp4

5-6 shortcut模块.mp4

5-7 加载训练好的权重.mp4

5-8 迁移学习效果对比.mp4

6-1 物体检测概述.mp4

6-2 深度学习经典检测方法.mp4

6-3 faster-rcnn概述.mp4

6-4 论文解读.mp4

6-5 RPN网络架构.mp4

6-6 损失函数定义.mp4

6-7 网络细节.mp4


       

下载量 : 0  |  类型 : 压缩文件

文章版权及转载声明

作者:站长本文地址:https://www.xiazai.red/post/18760.html发布于 2021-03-29
文章转载或复制请以超链接形式并注明出处下载集

赞(0)

觉得文章有用就打赏一下文章作者

支付宝扫一扫打赏

微信扫一扫打赏

分享

发表评论

快捷回复:

评论列表 (暂无评论,231人围观)参与讨论

还没有评论,来说两句吧...